
A COMPARISON OF DECLARATIVE AND HYBRID DECLARATIVE-PROCEDURAL MODELS                    
FOR ROVER OPERATIONS 

Russell Knight (1), Gregg Rabideau (1), Matthew Lenda (1), and Pierre Maldague (1) 
 

(1) Jet Propulsion Laboratory, California Institute of Technology 
4800 Oak Grove Drive, Pasadena, CA 91109 

<first name>.<last name>@jpl.nasa.gov 
 
 

ABSTRACT 

The MAPGEN [2] (Mixed-initiative Activity Plan 
GENerator) planning system is a great example of a 
hybrid procedural/declarative system where the 
advantages of each are leveraged to produce an effective 
planner/scheduler for Mars Exploration Rover tactical 
planning. We explore the adaptation of the same domain 
to an entirely declarative planning system (ASPEN [4] 
Activity Scheduling and Planning ENvironment), and 
demonstrate that, with some translation, much of the 
procedural knowledge encoding is amenable to a 
declarative knowledge encoding.  
 
1. INTRODUCTION 

Declarative domain representations facilitate describing 
what a proper (or good, when optimizing) solution 
looks like without having to describe all solutions. This 
is very attractive for operators of extraterrestrial robotic 
explorers (spacecraft and rovers) in that the generation 
of a plan can be separated from the process of certifying 
that the plan is safe to operate the robotic explorer. In 
some cases, automated plan generation can take the 
declarative description and aid in generating the plan as 
well. This enables faster integration of new constraints 
and shorter and more effective verification and 
validation of such systems. 
 
Procedural domain representations are, at the core, 
executable code that is used to either certify a plan or to 
generate a plan. Especially with respect to plan 
generation, constraints that dictate why a plan is 
constructed a certain way need never be explicitly 
represented in the domain representation. Procedural 
representations are usually very fast in terms of 
execution, but can be difficult to modify when new 
constraints are introduced and often require more 
involved and costly verification and validation. 
 
Many planning systems that deal with real problems are 
hybrid systems, where both declarative and procedural 
constructs are used in defining a domain. The 
MAPGEN planning system is a great example of a 
hybrid procedural/declarative system where the 
advantages of each are leveraged to produce an effective 
planner/scheduler for Mars Exploration Rover tactical 
planning. The work we report here is an exploration of 

using declarative domain representations for MER 
tactical planning. The specific planner we adapt to is 
ASPEN, but the general concept holds for many 
existing automated planner/schedulers.  
 
Our approach was to develop translators that translate 
from the core languages used for adapting MAPGEN to 
ASPEN modelling language. MAPGEN consists of 
Europa and APGEN [3]. Europa is a constraint-based 
planner/scheduler where domains are encoded using a 
declarative model. APGEN is also constraint-based, i.e., 
it tracks constraints on resources and states and other 
variables. For APGEN, domains are encoded in both 
constraints and code snippets that execute according to a 
forward sweep through the plan. Europa and APGEN 
communicate to each other using proxy activities in 
APGEN that represent constraints and/or tokens in 
Europa.  
 
The composition of a translator from Europa to ASPEN 
was fairly straightforward, as both are declarative 
planning systems, and the specific uses of Europa for 
the MER domain matched ASPEN’s native encoding 
fairly closely. Therefore, we will not delve into 
translating the Europa modelling language into ASPEN 
modelling language. 
 
On the other hand, translating from APGEN to ASPEN 
was considerably more involved. On the surface, the 
types of activities and resources one encodes in APGEN 
appear to match one-to-one to the activities, state 
variables, and resources in ASPEN. But, when looking 
into the definitions of how resources are profiled and 
activities are expanded, one sees code snippets that 
access various information available during planning for 
the moment in time being planned to decide at the time 
what the appropriate profile or expansion is. We see that 
APGEN is actually a forward (in time) sweeping 
discrete event simulator, where the model is composed 
of code snippets that are artfully interleaved by the 
engine to produce a plan/schedule. To address the issue 
of embedded procedural models, we simulate 
procedural code as a declarative series of task 
expansions. Predominantly, we had three types of 
procedural model to translate: loops, if-statements, and 
code blocks. Loops and if-statements were handled 
using controlled task expansion, and code blocks were 



handled using constraint networks that maintained the 
generation of results based on what the order of 
execution would be for a procedural representation. 
 
One great advantage with respect to performance for 
MAPGEN is the use of APGEN’s GUI. This GUI is 
written in C++ and Motif, and performs very well for 
large plans. ASPEN’s GUI is written in Java, and starts 
to slow down when working with large plans. 
 
We have demonstrated the system on five shadow 
operations days where we take the input to MAPGEN 
and feed it into our system, plan the day, and then 
compare the days. 
 
2. ARCHITECTURE COMPARISON 

MAPGEN takes as input an initial plan. The initial plan 
is arrived at after the morning planning meeting. The 
output from the morning planning meeting is the 
Maestro plan. Maestro is a tool used to view images and 
plan daily activities. The output of Maestro is read into 
the skeleton plan generator, which puts a generic set of 
supporting cast and other details into a skeleton plan. 
This plan is subsequently edited using the constraint 
editor to introduce temporal constraints not included in 
the skeleton plan or Maestro outputs [1]. Fig. 1 shows 
the flow graphically. 
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Figure 1. Arriving at an initial plan

 
The initial plan is in APGEN modelling language (AAF: 
APGEN adaptation file). We use this as an input to both 

MAPGEN and ASPEN. The other common inputs are 
the final state from the previous day’s planning session 
(and subsequent telemetry transmission) and the 
configuration files for the underlying MMPAT 
modelling system. 
 
Fig. 2 illustrates the MAPGEN product flow. The 
Europa Model, APGEN Model, and MMPAT 
configuration files rarely change. The initial plan and 
previous day’s final state change daily. Here we also see 
that we may need to invoke the constraint editor during 
the planning process, especially if we add new activities 
or change our minds about the ordering of existing 
activities. 
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Figure 2. MAPGEN plan generation 

 



Fig. 3 illustrates the plan generation flow while using 
ASPEN. We see that we use our translated set of models 
are available and used by ASPEN and that the 
modification of temporal constraints occurs within the 
ASPEN tool itself. 
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Figure 3. ASPEN plan generation 

 
3. APGEN to ASPEN Translation 

Fundamentally, APGEN modeling looks very similar to 
ASPEN modelling. Activities are modelled that levy 
constraints and post effects on shared states and 
resources.  
 

APGEN ASPEN 
activity activity 
nonconsumable resource non_depletable resource 
consumable resource depletable resource 
state resource state_variable 

Table 1. APGEN-ASPEN syntax comparison 
 
Note that non-consumable/non-depletable resources 
model a resource that is used over the interval and then 
released, e.g., power. Consumable/depletable resources 
model a resource that is used and not replenished 
(unless explicitly replenished via some other activity), 

e.g., energy. State resources/state variables model a 
single state over time, e.g., whether or not a heater is on 
or off. Henceforth, we shall refer to shared states and 
resources as timelines. Timelines are profiled, and the 
combined effects of various simultaneous activities are 
reflected in the profile of each timeline. Timelines can 
affect other timelines, allowing for a representation of 
cause and effect through the shared states and resources. 
Tab. 1 shows how similar the syntax is for activities and 
shared states and resources. 
 
For example, if we were to examine the 
GENRIC_HTR_USE activity in the APGEN adaptation 
(which represents using any of the heaters onboard the 
rover), we would see different effects on resources 
based on the heater_group parameter (which is an input 
parameter for the activity). If the heater_group is 
MOBILITY_LEFT_SIDE, then our effect on the 
power_consumption is a function of 
MOBILITY_LEFT_HTR_POWER (among others). If it 
is MOBILITY_RIGHT_SIDE, then our effect on 
power_consumption is a function of 
MOBILITY_RIGHT_HTR_POWER (among others).  
 
Similarly, with respect to sub-activities, if we were to 
examine the HAZCAM_FRONT activity in the APGEN 
adaptation (which represents using the forward hazard 
camera), we would see that the number of 
CAMERA_IMAGE_PAIR sub-activities generated is a 
function of the camera_selection array that is passed in 
on the creation of the activity. 
 
The fundamental difference comes when modelling how 
the timeline profiles are generated, what effects the 
timelines have on other timelines, and what sub-
activities are required in support of existing activities. 
To produce the resource profiles and to generate all sub-
activities, APGEN sweeps forward in simulated 
schedule time. It creates activities, expands 
decompositions, and applies resource and state 
constraints in temporal order. Each clause is stitched 
together into a single program that is executed and 
dynamically generated as simulated time sweeps 
forward. This forward-sweep nature allows for very 
efficient modelling of resources and states and allows 
for fast decomposition of parent activities into the 
supporting cast of children, but it does come at a cost of 
not being able to modify the past. This often can be 
overcome by performing some initial modelling to get 
the values you need when planning a pre-cursor activity 
and then letting the subsequent activity play out as 
needed. Of course, one could simply choose a value for 
the past based on values that one has acquired for the 
present and then re-run the simulation with the acquired 
value. This is potentially linearly inefficient in the time 
that is required to generate a plan, going from linear 
time to quadratic (in the abstract sense), but the “time of 
a plan” is the number of propagations one would need to 



resolve the plan. For MER, multiple-propagation is not 
necessary as all models were constructed such that a 
single forward sweep was sufficient to correctly model 
the profiling of resources and the expansion of activities 
into sub-activities. 
 
Our challenge then is to represent the resultant 
reasoning embedded in the execution of these code 
fragments using a declarative system. In the MER 
adaptation of APGEN, there were fundamentally only 
three different types of procedural code: 1) code blocks, 
2) if-statements, and 3) loops. We explore each in more 
detail, using both APGEN and ASPEN modelling 
language. 
 
Before continuing to the details of the translation, a 
quick outline of APGEN and ASPEN modelling is in 
order. Our examples will focus only on the generation 
of sub-activities. 
 
APGEN includes the ability to model activities. 
Activities consist of attributes, parameters, resource 
usage, and decompositions (among others). We will 
focus on parameters and decompositions. Every activity 
has the built-in parameters start (the start time of the 
activity), finish (the end time of the activity), and span 
(the duration of the activity). Other parameters can be 
declared at the beginning of an activity. The 
decomposition is a code snippet that usually describes 
how to add activities to the schedule and modify the 
span of the existing activity. The following example is 
of a FOO_CHILD activity type, along with a FOO 
activity that consists of two FOO_CHILD activities, 
ordered back to back. 

(1) activity type FOO_CHILD 
(2) begin 
(3)   parameters 
(4)     A: local integer default to 0; 
(5) end activity type FOO_CHILD 
(6) activity type FOO 
(7) begin 
(8)   nonexclusive_decomposition 
(9)     child: instance default to "generic"; 
(10)     child1span: duration default to span; 
(11)     call(“FOO_CHILD”, child) at start; 
(12)     child1span = child.span; 
(13)     call(“FOO_CHILD”, child) at start 

+child1span; 
(14)     span = child1span + child.span; 
(15) end activity type FOO 

Lines 1-5 declare the child activity and lines 6-14 
declare the base activity. Note lines 9 through 13 are to 
add sub-activities and to adjust the span of the activity. 
It should be noted that the finish parameter is 
automatically updated. The call statements add an 
activity of the type listed in the first parameter to the 
schedule. 
 

Compare this to the same model encoded in ASPEN: 
(1) activity FOO_CHILD { 
(2)   int A; 
(3) } 
(4) activity FOO { 
(5)   int child1span, child2start, child2span; 
(6)   dependencies = 
(7)     child2start<-sum(start_time, child1span), 
(8)     duration <-sum(child1span, child2span); 
(9)   decomposition = 
(10)     FOO_CHILD with (start_time->start_time, 
(11)                                     child1span<-duration), 
(12)     FOO_CHILD with (child2span<-duration); 
(13) } 

Similar to APGEN, ASPEN activities always include a 
start_time, end_time, and duration parameter. ASPEN 
does not use mathematic expressions, but instead uses 
dependency assignments, e.g., x<-y indicates that x is 
constrained to equal y (but not vice versa). Note that in 
ASPEN we could forego the math and simply express a 
temporal relationship between the child activities, but 
our purpose here is to translate APGEN to ASPEN 
directly. The dependencies statements describe how to 
“hook up” the constraint network to various variables. 
We don’t know when the values will be assigned, but 
we do know that a change in one will cause a 
propagation of the constraint network much like 
changing the value of a cell in Excel. The with clauses 
in the decomposition are also used to hook-up the 
constraint network, but in this case we are hooking up 
values in external activities. The direction of the arrow 
tells us which direction the dependency (or equality 
constraint, in this case) goes. This dictates the direction 
of propagation. In this example, we would never change 
the duration of a child activity from the parent, but 
changing a child activity’s duration would result in a 
change to the duration of the parent activity. 
 
3.1. Code Blocks 

Code blocks might seem trivial to convert to declarative 
representations, but consider the following fragment of 
procedural code (in standard APGEN, which has a c-
like syntax): 

(1) A : integer; 
(2) A = x; 
(3) call(“FOO_CHILD”, A, child); 
(4) A += y; 
(5) call(“FOO_CHILD”, A, child); 

Clearly, the following declarative representation would 
fail: 

(1) int A; 
(2) decomposition = 
(3)   FOO_CHILD with (A->A), 
(4)   FOO_CHILD with (A->A); 
(5) dependencies = 
(6)   A <- x, 
(7)   A <- sum(A, y); 



The result of such an ill-advised adaptation would be 
two sub-activities being generated with the same value 
being passed to each child, along with the added 
“feature” of having the value of A change continually 
and somewhat randomly as the constraint network 
propagates. Some systems would be able to detect that 
this can never be resolved and mark any activity 
introducing such a set of constraints as being faulty.  
 
To address this, we clearly need to consider the value of 
A as it evolves over time. Specifically, for each step in a 
procedure where A changes, we need to keep track of 
the “new” A in that context and build our network 
accordingly. Thus, the correct declarative representation 
of the procedure would be the following: 

(1) int A_2, A_5; 
(2) decomposition = 
(3)   FOO_CHILD with (A_2->A), 
(4)   FOO_CHILD with (A_5->A); 
(5) dependencies = 
(6)   A_2 <- x, 
(7)   A_5 <- sum(A_2, y); 

Now, should the value of x change, then the value of 
A_2 would change, and propagate to A_5, and result in 
a propagation down to both sub-activities of the 
appropriate value. But, let us draw our attention what 
happens when y changes. The value of A_2 is left 
unaltered and only the value of A_5 changes. This gives 
us an incremental capability to modify parameters in the 
context of an executing block of code without having to 
actually execute the block of code. 
 
One challenge for this approach is faithfully 
representing short-circuiting of evaluation of 
components of Boolean expressions. Our translator does 
not explicitly deal with short-circuiting except for 
reporting warnings of where short-circuit structures 
exist in the code. For the MER adaptation, this had no 
impact on the correctness of the final adaptation. This is 
due to the lack of reliance on avoiding side effects, 
which is a testament to the overall high quality of the 
design of the model. 
 
Finally, blocks of code should be seen as modular, 
copy-able extensions of code (if one thinks of executing 
a block of code as copying it). If a code block occurs in 
an IF statement or a loop, a more modular form of 
representation is called for in the model. To address 
this, we represent each code block as a separate activity. 
This allows for multiple copies of the block to exist with 
the same structure, representing different “executions” 
of the code block. Thus, extending our example: 

(1) activity Foo_code_block_1 { 
(2)   int x, y; //input parameters 
(3)   int A_2, A_5; 
(4)   decomposition = 
(5)     FOO_CHILD with (A_2->A), 
(6)     FOO_CHILD with (A_5->A); 

(7)   dependencies = 
(8)     A_2 <- x, 
(9)     A_5 <- sum(A_2, y); 
(10) } 

 
 
3.2. IF Statements 

If-statements in APGEN come in the standard c-like 
syntax: 

(1) if(<Boolean expression>) <block if true> else 
<block if false> ; 

In ASPEN, we can easily code each block (both <block 
if true> and <block if false>) as a code-block activity. 
We use an enclosing activity for the if-statement using 
disjunctive decompositions and forcing the selection of 
which decomposition to use through a feature in 
ASPEN called the decomposition index. The following 
is an example of “if(a==1) <true_code_block> else 
<false_code_block>;”. 

(1) activity foo_if { 
(2)   int a; 
(3)   dependencies = 
(4)     decomposition_index<-if(eq(a,1),0,1); 
(5)   decompositions= 
(6)     ( foo_if_true_code_block ) or 
(7)     ( foo_if_false_code_block); 
(8) } 

Note that the if-function behaves similarly to the if-
function in Excel. The Boolean eq-function returns true 
when all arguments are equal. Disjunctive 
decomposition indexing starts with 0 for the first 
decomposition choice. 
 
3.3. Loops 

We might be tempted to believe that the same structure 
that handles if-statements might be able to handle a loop 
(and in general we would be correct), but the key 
missing element for such a structure is the ability to 
branch back to previous code. Our translation approach 
is analogous to unrolling the loop into a sequence that 
has a length that varies based on the loop criteria.  
 
All loops in APGEN can be expressed in the following 
c-like form: 

(1) while(<Boolean expression>)<block>; 
We again take advantage of the decomposition index 
feature for our translation, but we use a recursion to the 
same activity type to represent the loop, including the 
changing of the variable used in the Boolean expression 
that determines the termination criteria. So, in APGEN 
we might have: 

(1) a : integer default to 5; 
(2) child: instance default to “generic”; 
(3) while(a>0){ 
(4)   call(“foo_child”, a, child); 
(5)   a--; 
(6) } 



The ASPEN equivalent being: 
(1) activity foo_while { 
(2)   int a, a_5; 
(3)   dependencies = 
(4)     a_5<-sub(a,1), 
(5)     decomposition_index<-if(gt(a,0),0,1); 
(6)   decompositions= 
(7)     ( foo_while with(a_5->a) 
(8)       foo_child with a->a) or 
(9)     ( nop ); 
(10) } 

The Boolean gt-function returns true if the first 
argument is greater than the second argument. Note that 
we do not include a block activity as the contents of the 
block are usually included in the loop activity. Also note 
the special nop-activity used where a decomposition 
selection is empty. 
 
 
4. COMPARISON 

Since some of the inputs and outputs are the same from 
ASPEN and APGEN (when adapted to MER), our 
approach was to compare outputs. Not surprisingly, our 
final adaptation showed little difference in outputs, with 
the exception of the display of certain profiled 
information from external power modelling system 
MMPAT. 
 
In APGEN, MMPAT is integrated tightly into the core 
and APGEN renders the MMPAT timelines at a fidelity 
that is adjustable within the model (this also goes to the 
fidelity with which other APGEN entities generate 
profiles for other non-MMPAT based timelines) called 
MMPATfidelity, which for MER is set to between 9 and 
12 minutes. APGEN interpolates values between these 
intervals.  
 
In contrast, ASPEN tracks the worst-case value for 
these intervals and displays only that, making a kind of 
stair-step timeline versus a nice, smooth display. 
 
Fig. 4 shows the ASPEN GUI with an example of one 
of the days that were planned using ASPEN. Fig. 5 
shows the MAPGEN GUI of same day planned using 
MAPGEN. Even though the images are quite small 
here, it is easy to see the discritization that occurs when 
displaying the power timelines. 
 

 
Figure 4. ASPEN display of Sol 2594, MER B. 

 

 
Figure 5. MAPGEN display of Sol 2594, MER B. 

 
Another variance between ASPEN and MAPGEN was 
that durations for sub-second events were rounded to 
single second in ASPEN, leading to some small mis-
alignments in the output files. This was quite rare and 
the sub-second durations in MAPGEN were 
approximations that could be rounded up without 
causing issues. Subsequent conversion techniques 
should use ASPEN’s ability to model time at a higher 
fidelity than 1 second to accommodate sub-second 
events. ASPEN can model temporal intervals as small 
as a nano-second. 
 
Both ASPEN and MAPGEN allow for the display of 
various time frames in the same user interface, so Mars 
time (or MER A time, to be more specific) can be 
displayed along with UTC or whatever time frame is 
preferred by the user. More importantly, input files can 
refer to these time frames and the internal time 
representation can align and translate these properly. 
This is particularly useful when aligning DSN 
operations with rover and orbiter operations. 
 
It should be noted, however, that the MAPGEN GUI is 
much more responsive than the ASPEN GUI for 
multiple-day plans when displaying all of the power 
profiles. This is due in part to the fact that the 
MAPGEN GUI is embedded Motif, which runs 



extremely fast, and in part to the design of ASPEN’s 
user interface.  
 
An ASPEN instance starts as a server. The GUI is a java 
application that connects to the server via a socket. The 
GUI is responsible for synchronization with the server 
and maintains a lightweight copy of the schedule 
database. This allows for an arbitrary number of clients 
to connect to an ASPEN instance. While this 
architecture is particularly useful for distributing views 
of the same plan/schedule and allowing for 
contemporaneous modification, it is not really necessary 
for the single-user case that MER represents, and the 
overhead of copying and synchronizing the plan 
database across the socket costs us in terms of 
performance. 
 
On the other hand, introducing temporal constraints 
between activities in ASPEN is a bit more straight-
forward than with MAPGEN. In MAPGEN, a separate 
tool, called the constraint editor, is invoked and 
temporal constraints are introduced using the tool. In 
ASPEN, temporal constraints can be added and deleted 
directly through the user interface, leading to a more 
fluid user experience. But, the generation of skeleton 
plans by the skeleton plan generator that is in common 
use nowadays obviates the need to edit the temporal 
constraints very often, so this is not so much of a gain in 
practice. 
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